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Emergency Generators Air Emissions Estimate

Quantity 1
Capacity 50 hp
Operation 500 hr/yr
Sulfur % 0.5

Parameter
Emission

Factor
[lb/hp-hr]

Emission
per

Generator
[lb/hr]

Total
Emissions

[lb/hr]

Annual 
Emissions
[ton/yr]

NOx 0.0310            1.5500            1.5500                0.3875            
CO 0.0067            0.3340            0.3340                0.0835            
SOx 0.0021            0.1025            0.1025                0.0256            
PM 0.0022            0.1100            0.1100                0.0275            
Aldehydes 0.0005            0.0232            0.0232                0.0058            
TOC 0.0025            0.1235            0.1235                0.0309            
Lead -                  -                  -                       -                  

Combustion gases total emissions 0.561             ton/yr

Calculations
NOx: EF * Capacity * Quantity * Operation = 0.031 * 50 * 1 * 500 / 2,000 = 0.3875 ton/yr
CO EF * Capacity * Quantity * Operation = 0.00668 * 50 * 1 * 500 / 2,000 = 0.0835 ton/yr
SOx: EF * Capacity * Quantity * Operation = 0.00205 * 50  * 1 * 500 / 2,000 = 0.025625 ton/yr
PM: EF * Capacity * Quantity * Operation = 0.0022 * 50 * 1 * 500 / 2,000 = 0.0275 ton/yr
Aldehydes EF * Capacity * Quantity * Operation = 0.000463 * 50 * 1 * 500 / 2,000 = 0.005788 ton/yr
TOC: EF * Capacity * Quantity * Operation = 0.00247 * 50 * 1 * 500 / 2,000 = 0.030875 ton/yr
Lead EF * Capacity * Quantity * Operation = 0 * 50 * 1 * 500 / 2,000 = 0 ton/yr
Total: 0.561 ton/yr

Aspenall Energies, LLC
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Emergency Generators Air Emissions Estimate

Quantity 1
Capacity 536 hp
Operation 500 hr/yr
Sulfur % 0.5

Parameter
Emission

Factor
[lb/hp-hr]

Emission
per

Generator
[lb/hr]

Total
Emissions

[lb/hr]

Annual 
Emissions
[ton/yr]

NOx 0.0310            16.6160          16.6160              4.1540            
CO 0.0067            3.5805            3.5805                0.8951            
SOx 0.0021            1.0988            1.0988                0.2747            
PM 0.0022            1.1792            1.1792                0.2948            
Aldehydes 0.0005            0.2482            0.2482                0.0620            
TOC 0.0025            1.3239            1.3239                0.3310            
Lead -                  -                  -                       -                  

Combustion gases total emissions 6.012             ton/yr

Calculations
NOx: EF * Capacity * Quantity * Operation = 0.031 * 536 * 1 * 500 / 2,000 = 4.154 ton/yr
CO EF * Capacity * Quantity * Operation = 0.00668 * 536 * 1 * 500 / 2,000 = 0.89512 ton/yr
SOx: EF * Capacity * Quantity * Operation = 0.00205 * 536  * 1 * 500 / 2,000 = 0.2747 ton/yr
PM: EF * Capacity * Quantity * Operation = 0.0022 * 536 * 1 * 500 / 2,000 = 0.2948 ton/yr
Aldehydes EF * Capacity * Quantity * Operation = 0.000463 * 536 * 1 * 500 / 2,000 = 0.062042 ton/yr
TOC: EF * Capacity * Quantity * Operation = 0.00247 * 536 * 1 * 500 / 2,000 = 0.33098 ton/yr
Lead EF * Capacity * Quantity * Operation = 0 * 536 * 1 * 500 / 2,000 = 0 ton/yr
Total: 6.012 ton/yr

Aspenall Energies, LLC
Santa Isabel, Puerto Rico
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Aspenall Energies, LLC
Santa Isabel, Puerto Rico

Emergency Generators Air Emissions Estimate
Emissions Summary

Parameter
Annual 

Emissions
[ton/yr]

NOx 4.5415
CO 0.97862
SOx 0.300325
PM 0.3223
Aldehydes 0.0678295
TOC 0.361855
Lead -               
Total 6.5724295



APPENDIX A
AIR EMISSIONS FACTORS



3.3 Gasoline And Diesel Industrial Engines

3.3.1 General

The engine category addressed by this section covers a wide variety of industrial applications
of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile
refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such
as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC
engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and
portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The
rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline
engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in
Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines".) Understandably,
substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable
assumptions concerning usage in order to formulate some of the emission factors.

3.3.2 Process Description

All reciprocating IC engines operate by the same basic process. A combustible mixture is first
compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture
is then ignited, and the resulting high-pressure products of combustion push the piston through the
cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston
returns, pushing out exhaust gases, and the cycle is repeated.

There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI)
and spark ignition (SI). This section deals with both types of reciprocating IC engines. All diesel-
fueled engines are compression ignited, and all gasoline-fueled engines are spark ignited.

In CI engines, combustion air is first compression heated in the cylinder, and diesel fuel oil is
then injected into the hot air. Ignition is spontaneous because the air temperature is above the
autoignition temperature of the fuel. SI engines initiate combustion by the spark of an electrical
discharge. Usually the fuel is mixed with the air in a carburetor (for gasoline) or at the intake valve
(for natural gas), but occasionally the fuel is injected into the compressed air in the cylinder.

CI engines usually operate at a higher compression ratio (ratio of cylinder volume when the
piston is at the bottom of its stroke to the volume when it is at the top) than SI engines because fuel is
not present during compression; hence there is no danger of premature autoignition. Since engine
thermal efficiency rises with increasing pressure ratio (and pressure ratio varies directly with
compression ratio), CI engines are more efficient than SI engines. This increased efficiency is gained
at the expense of poorer response to load changes and a heavier structure to withstand the higher
pressures.1

3.3.3 Emissions

Most of the pollutants from IC engines are emitted through the exhaust. However, some total
organic compounds (TOC) escape from the crankcase as a result of blowby (gases that are vented from
the oil pan after they have escaped from the cylinder past the piston rings) and from the fuel tank and
carburetor because of evaporation. Nearly all of the TOCs from diesel CI engines enter the
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atmosphere from the exhaust. Evaporative losses are insignificant in diesel engines due to the low
volatility of diesel fuels.

The primary pollutants from internal combustion engines are oxides of nitrogen (NOx), total
organic compounds (TOC), carbon monoxide (CO), and particulates, which include both visible
(smoke) and nonvisible emissions. Nitrogen oxide formation is directly related to high pressures and
temperatures during the combustion process and to the nitrogen content, if any, of the fuel. The other
pollutants, HC, CO, and smoke, are primarily the result of incomplete combustion. Ash and metallic
additives in the fuel also contribute to the particulate content of the exhaust. Sulfur oxides (SOx) also
appear in the exhaust from IC engines. The sulfur compounds, mainly sulfur dioxide (SO2), are
directly related to the sulfur content of the fuel.2

3.3.3.1 Nitrogen Oxides -
Nitrogen oxide formation occurs by two fundamentally different mechanisms. The

predominant mechanism with internal combustion engines is thermal NOx which arises from the
thermal dissociation and subsequent reaction of nitrogen (N2) and oxygen (O2) molecules in the
combustion air. Most thermal NOx is formed in the high-temperature region of the flame from
dissociated molecular nitrogen in the combustion air. Some NOx, called prompt NOx, is formed in the
early part of the flame from reaction of nitrogen intermediary species, and HC radicals in the flame.
The second mechanism, fuel NOx, stems from the evolution and reaction of fuel-bound nitrogen
compounds with oxygen. Gasoline, and most distillate oils have no chemically-bound fuel N2 and
essentially all NOx formed is thermal NOx.

3.3.3.2 Total Organic Compounds -
The pollutants commonly classified as hydrocarbons are composed of a wide variety of organic

compounds and are discharged into the atmosphere when some of the fuel remains unburned or is only
partially burned during the combustion process. Most unburned hydrocarbon emissions result from
fuel droplets that were transported or injected into the quench layer during combustion. This is the
region immediately adjacent to the combustion chamber surfaces, where heat transfer outward through
the cylinder walls causes the mixture temperatures to be too low to support combustion.

Partially burned hydrocarbons can occur because of poor air and fuel homogeneity due to
incomplete mixing, before or during combustion; incorrect air/fuel ratios in the cylinder during
combustion due to maladjustment of the engine fuel system; excessively large fuel droplets (diesel
engines); and low cylinder temperature due to excessive cooling (quenching) through the walls or early
cooling of the gases by expansion of the combustion volume caused by piston motion before
combustion is completed.2

3.3.3.3 Carbon Monoxide -
Carbon monoxide is a colorless, odorless, relatively inert gas formed as an intermediate

combustion product that appears in the exhaust when the reaction of CO to CO2 cannot proceed to
completion. This situation occurs if there is a lack of available oxygen near the hydrocarbon (fuel)
molecule during combustion, if the gas temperature is too low, or if the residence time in the cylinder
is too short. The oxidation rate of CO is limited by reaction kinetics and, as a consequence, can be
accelerated only to a certain extent by improvements in air and fuel mixing during the combustion
process.2-3
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3.3.3.4 Smoke and Particulate Matter -
White, blue, and black smoke may be emitted from IC engines. Liquid particulates appear as

white smoke in the exhaust during an engine cold start, idling, or low load operation. These are
formed in the quench layer adjacent to the cylinder walls, where the temperature is not high enough to
ignite the fuel. Blue smoke is emitted when lubricating oil leaks, often past worn piston rings, into the
combustion chamber and is partially burned. Proper maintenance is the most effective method of
preventing blue smoke emissions from all types of IC engines. The primary constituent of black
smoke is agglomerated carbon particles (soot) formed in regions of the combustion mixtures that are
oxygen deficient.2

3.3.3.5 Sulfur Oxides -
Sulfur oxides emissions are a function of only the sulfur content in the fuel rather than any

combustion variables. In fact, during the combustion process, essentially all the sulfur in the fuel is
oxidized to SO2. The oxidation of SO2 gives sulfur trioxide (SO3), which reacts with water to give
sulfuric acid (H2SO4), a contributor to acid precipitation. Sulfuric acid reacts with basic substances to
give sulfates, which are fine particulates that contribute to PM-10 and visibility reduction. Sulfur
oxide emissions also contribute to corrosion of the engine parts.2-3

3.3.4 Control Technologies

Control measures to date are primarily directed at limiting NOx and CO emissions since they
are the primary pollutants from these engines. From a NOx control viewpoint, the most important
distinction between different engine models and types of reciprocating engines is whether they are
rich-burn or lean-burn. Rich-burn engines have an air-to-fuel ratio operating range that is near
stoichiometric or fuel-rich of stoichiometric and as a result the exhaust gas has little or no excess
oxygen. A lean-burn engine has an air-to-fuel operating range that is fuel-lean of stoichiometric;
therefore, the exhaust from these engines is characterized by medium to high levels of O2. The most
common NOx control technique for diesel and dual-fuel engines focuses on modifying the combustion
process. However, selective catalytic reduction (SCR) and nonselective catalytic reduction (NSCR)
which are post-combustion techniques are becoming available. Controls for CO have been partly
adapted from mobile sources.4

Combustion modifications include injection timing retard (ITR), preignition chamber
combustion (PCC), air-to-fuel ratio adjustments, and derating. Injection of fuel into the cylinder of a
CI engine initiates the combustion process. Retarding the timing of the diesel fuel injection causes the
combustion process to occur later in the power stroke when the piston is in the downward motion and
combustion chamber volume is increasing. By increasing the volume, the combustion temperature and
pressure are lowered, thereby lowering NOx formation. ITR reduces NOx from all diesel engines;
however, the effectiveness is specific to each engine model. The amount of NOx reduction with ITR
diminishes with increasing levels of retard.4

Improved swirl patterns promote thorough air and fuel mixing and may include a
precombustion chamber (PCC). A PCC is an antechamber that ignites a fuel-rich mixture that
propagates to the main combustion chamber. The high exit velocity from the PCC results in improved
mixing and complete combustion of the lean air/fuel mixture which lowers combustion temperature,
thereby reducing NOx emissions.4
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The air-to-fuel ratio for each cylinder can be adjusted by controlling the amount of fuel that
enters each cylinder. At air-to-fuel ratios less than stoichiometric (fuel-rich), combustion occurs under
conditions of insufficient oxygen which causes NOx to decrease because of lower oxygen and lower
temperatures. Derating involves restricting the engine operation to lower than normal levels of power
production for the given application. Derating reduces cylinder pressures and temperatures, thereby
lowering NOx formation rates.4

SCR is an add-on NOx control placed in the exhaust stream following the engine and involves
injecting ammonia (NH3) into the flue gas. The NH3 reacts with NOx in the presence of a catalyst to
form water and nitrogen. The effectiveness of SCR depends on fuel quality and engine duty cycle
(load fluctuations). Contaminants in the fuel may poison or mask the catalyst surface causing a
reduction or termination in catalyst activity. Load fluctuations can cause variations in exhaust
temperature and NOx concentration which can create problems with the effectiveness of the SCR
system.4

NSCR is often referred to as a three-way conversion catalyst system because the catalyst
reactor simultaneously reduces NOx, CO, and HC and involves placing a catalyst in the exhaust stream
of the engine. The reaction requires that the O2 levels be kept low and that the engine be operated at
fuel-rich air-to-fuel ratios.4

The most accurate method for calculating such emissions is on the basis of "brake-specific"
emission factors (pounds per horsepower-hour [lb/hp-hr]). Emissions are the product of the brake-
specific emission factor, the usage in hours, the rated power available, and the load factor (the power
actually used divided by the power available). However, for emission inventory purposes, it is often
easier to assess this activity on the basis of fuel used.

Once reasonable usage and duty cycles for this category were ascertained, emission values
were aggregated to arrive at the factors for criteria and organic pollutants presented. Factors in
Table 3.3-1 are in pounds per million British thermal unit (lb/MMBtu). Emission data for a specific
design type were weighted according to estimated material share for industrial engines. The emission
factors in these tables, because of their aggregate nature, are most appropriately applied to a population
of industrial engines rather than to an individual power plant. Table 3.3-2 shows unweighted speciated
organic compound and air toxic emission factors based upon only 2 engines. Their inclusion in this
section is intended for rough order-of-magnitude estimates only.

Table 3.3-3 summarizes whether the various diesel emission reduction technologies (some of
which may be applicable to gasoline engines) will generally increase or decrease the selected
parameter. These technologies are categorized into fuel modifications, engine modifications, and
exhaust after-treatments. Current data are insufficient to quantify the results of the modifications.
Table 3.3-3 provides general information on the trends of changes on selected parameters.
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3.3.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are
summarized below. For further detail, consult the memoranda describing each supplement or the
background report for this section.

Supplement A, February 1996

No changes.

Supplement B, October 1996

Text was revised concerning emissions and controls.

The CO2 emission factor was adjusted to reflect 98.5 percent conversion efficiency.
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Table 3.3-1.  EMISSION FACTORS FOR UNCONTROLLED GASOLINE
AND DIESEL INDUSTRIAL ENGINESa 

Pollutant

Gasoline Fuel
(SCC 2-02-003-01, 2-03-003-01)

Diesel Fuel
(SCC 2-02-001-02, 2-03-001-01)

EMISSION
FACTOR
RATING

Emission Factor
(lb/hp-hr)

(power output)

Emission Factor
(lb/MMBtu)
(fuel input)

Emission Factor
(lb/hp-hr)

(power output)

Emission Factor
(lb/MMBtu)
(fuel input)

NOx 0.011 1.63 0.031 4.41 D

CO 6.96 E-03d 0.99d 6.68 E-03 0.95 D

SOx 5.91 E-04 0.084 2.05 E-03 0.29 D

PM-10b 7.21 E-04 0.10 2.20 E-03 0.31 D

CO2
c 1.08 154 1.15 164 B

Aldehydes 4.85 E-04 0.07 4.63 E-04 0.07 D

TOC

  Exhaust 0.015 2.10 2.47 E-03 0.35 D

  Evaporative 6.61 E-04 0.09 0.00 0.00 E

  Crankcase 4.85 E-03 0.69 4.41 E-05 0.01 E

  Refueling 1.08 E-03 0.15 0.00 0.00 E
a References 2,5-6,9-14.  When necessary, an average brake-specific fuel consumption (BSFC) of

7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr.  To convert from lb/hp-hr to kg/kw-
hr, multiply by 0.608.  To convert from lb/MMBtu to ng/J, multiply by 430.  SCC = Source
Classification Code.  TOC = total organic compounds.

b PM-10 = particulate matter less than or equal to 10 :m aerodynamic diameter.  All particulate is
assumed to be # 1 :m in size.

c Assumes 99% conversion of carbon in fuel to CO2 with 87 weight % carbon in diesel, 86 weight %
carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and
gasoline heating value of 20,300 Btu/lb.

d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions
factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively.
This is an editorial correction.  March 24, 2009



Table 3.3-2. SPECIATED ORGANIC COMPOUND EMISSION
FACTORS FOR UNCONTROLLED DIESEL ENGINESa

EMISSION FACTOR RATING: E

Pollutant

Emission Factor
(Fuel Input)
(lb/MMBtu)

Benzeneb 9.33 E-04

Tolueneb 4.09 E-04

Xylenesb 2.85 E-04

Propylene 2.58 E-03

1,3-Butadieneb,c <3.91 E-05

Formaldehydeb 1.18 E-03

Acetaldehydeb 7.67 E-04

Acroleinb <9.25 E-05

Polycyclic aromatic hydrocarbons (PAH)

Naphthaleneb 8.48 E-05

Acenaphthylene <5.06 E-06

Acenaphthene <1.42 E-06

Fluorene 2.92 E-05

Phenanthrene 2.94 E-05

Anthracene 1.87 E-06

Fluoranthene 7.61 E-06

Pyrene 4.78 E-06

Benzo(a)anthracene 1.68 E-06

Chrysene 3.53 E-07

Benzo(b)fluoranthene <9.91 E-08

Benzo(k)fluoranthene <1.55 E-07

Benzo(a)pyrene <1.88 E-07

Indeno(1,2,3-cd)pyrene <3.75 E-07

Dibenz(a,h)anthracene <5.83 E-07

Benzo(g,h,l)perylene <4.89 E-07

TOTAL PAH 1.68 E-04
a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification

Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
b Hazardous air pollutant listed in theClean Air Act.
c Based on data from 1 engine.
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Table 3.3-3. EFFECT OF VARIOUS EMISSION CONTROL TECHNOLOGIES
ON DIESEL ENGINESa

Technology

Affected Parameter

Increase Decrease

Fuel modifications

Sulfur content increase PM, wear

Aromatic content increase PM, NOx

Cetane number PM, NOx

10% and 90% boiling point PM

Fuel additives PM, NOx

Water/Fuel emulsions NOx

Engine modifications

Injection timing retard PM, BSFC NOx, power

Fuel injection pressure PM, NOx

Injection rate control NOx, PM

Rapid spill nozzles PM

Electronic timing & metering NOx, PM

Injector nozzle geometry PM

Combustion chamber modifications NOx, PM

Turbocharging PM, power NOx

Charge cooling NOx

Exhaust gas recirculation PM, power, wear NOx

Oil consumption control PM, wear

Exhaust after-treatment

Particulate traps PM

Selective catalytic reduction NOx

Oxidation catalysts TOC, CO, PM
a Reference 8. PM = particulate matter. BSFC = brake-specific fuel consumption.
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